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This paper extends two earlier papers in which DiPrima & Stuart calculated first 
(19723) the critical Taylor number to order s2, where the eccentricity E is proportional 
to the displacement of the axes of the circular cylinders, and second (1975) the torque 
and load to order s associated with nonlinear effects of Taylor vortices. In the latter 
paper, it  was shown that to order E the torque arising from the Taylor vortices is 
identical with that for the concentric problem, which was first calculated, by a per- 
turbation met,hod, by Davey (1962). This deficiency is remedied in the present paper, 
where the calculation is taken to order s2. It is found that, as E rises, the torque asso- 
ciated with the Taylor vortices falls slightly when we keep constant the percentage 
elevation of the Taylor number above the s-dependent critical value. This result is in 
accordance with experimental observations by Vohr (1967, 1968). In addition, results 
of calculations of the pressure field developed by the Taylor-vortex flow in association 
with the eccentric geometry are presented; this is larger than in the concentric case 
owing to a Reynolds lubrication effect. Also given are the associated components of 
the load on the inner cylinder, but only for Taylor numbers close to the critical value. 

One additional observation by Vohr, for cylinders with a mean ratio of the gap to 
the inner radius of 0.099, was that the maximum Taylor-vortex strength with 
e = 0.475 occurred some 50" downstream of the maximum gap for a 20% elevation 
of the Taylor number above the critical value. Calculations in the two earlier papers 
(19723, 1975) gave 90 and 76", respectively, for that angle. Note that in the 1975 
paper a geometrical correction of order s was included. Here, with an additional 
modification of order e due to the flow, t,his result is improved to 49" by the extended 
analysis presented, although the 'small ' parameters are somewhat outside the range 
for which perturbation theory is expected to be valid. 
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1. Introduction 
In three earlier papers (DiPrima & Stuart 1972a, b,  1975, hereafter designated I, 

11,111) two of the present authors developed theories for various aspects of the flow 
between two long rotating circular cylinders whose axes are displaced by an amount 
(b  - a )  E ,  where b and a are the radii of the outer and inner cylinders and E (0 ,< E < 1)  
is the eccentricity. This configuration is typical of the journal bearing and is of im- 
portance in lubrication technology. A summary of that earlier work is given by DiPrima 
& Stuart (1974). 

In  I the laminar Aow was calculated as a series in two small parameters, namely the 
clearance ratio 6 = (b -a)/. and a modified Reynolds number R, proportional to 
ql(b - a)2/av, where q1 is the linear speed of the inner cylinder and v is the kinematic 
viscosity. The work was really an extension, based on the Navier-Stokes equations, 
of Reynolds' classic work of 1886, and the eccentricity E was allowed to take any value 
in the range 0 < E < 1. However, for application to lubrication problems in liquids, 
the results are necessarily restricted to moderate values of E ,  with 6 small, since fluid 
cavitation occurs in the expanding region of the bearing for larger values of E .  

The linear stability of this steady flow was considered in II through a calculation 
to order €2 in which 6f was held proportional to E as the latter tended to zero. The 
resulting critical Taylor number, which depended on E and 6, was acceptably close to 
many observations. Moreover, after a regrettable error in those calculations had been 
noted briefly at  the end of 111, the agreement with observation was found to be even 
closer; the corrected curves are presented in this paper in figures 2, 3 and 4. One 
additional prediction of I1 was that, since the stability problem is non-local, the 
position of maximum vortex activity lies not at  the position of maximum gap, where 
the basic flow is most unstable, but is shifted substantially downstream. This result 
is qualitatively in accordance with observations by Vohr (1 967, 1968). 

Whereas the analysis in I1 was based on linearized perturbation equations, with 
the expansion taken to order e2 ,  that in I11 used equations nonlinear in the Taylor- 
vortex velocity amplitude, but took the expansion only to order E .  The earlier tech- 
nique of holding 6f proportional to € was again used, but with the additional constraint 
that the amplitude was made proportional to d .  In  this way nonlinear and eccentric 
effects were brought in simultaneously through a single amplitude equation. In  the 
course of the analysis, it was found, not surprisingly in retrospect, that a stronger 
Taylor-vortex pressure field, compared with the concentric case, is developed by a 
'lubrication' effect and that it is necessary to account for this pressure in order to 
satisfy boundary conditions on the velocity components at  higher order. A related 
phenomenon occurs in the calculation of waves on water of finite depth (Benney & 
Roskes 1969; Davey & Stewartson 1974) and in the calculation of wave systems in 
plane Poiseuille flow (Davey, Hocking & Stewartson 1974), while Eagles (1971) noted 
the importance of a related pressure eigenfunction in the calculation of wavy vortices 
between concentric circular cylinders. In  a similar sense, the discussion of pressure in 
plane Poiseuille flow by Stuart (1958, 1960) is relevant. Furthermore, a more abstract 
discussion is given by Kennett (1974). 

The results of I11 were threefold: (i) after allowance for a geometrical effect of 
order 6, the position of maximum vortex activity (76") was found to be closer to the 
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experimental situation (50") than was the result in I1 (nearly 90"); (ii) the torque on 
the inner cylinder was precisely that of the concentric case when the calculation was 
taken to order E ;  (iii) the load on the inner cylinder was calculated. 

In the present paper, our object is to take the nonlinear calculation to order €2, 

and to calculate the changes brought about in (i), (ii) and (iii) above. 

2. The basic equations and a perturbation expansion 
In order to condense this paper and to avoid undue repetition, we shall refer to 

I11 for much of the detail and for many of the equations. Some geometrical and other 
details are, however, essential and will now be given. The two infinite cylinders with 
radii a and b, linear speeds q1 and q2 and with their centres a distance ae = e(b - a )  
apart are shown in figure 1. Instead of polar co-ordinates (r ,  0) centred on the inner 
cylinder, modified bipolar co-ordinates (p ,  9) are used (Wood 1957), with the inner 
cylinder at  p = 1 and the outer a t  p = /3 = 1 +a, while 9 = 0 and 0 = 0 are coincident 
at the maximum gap. The following parameters are relevant: 

The p and $ components up and uc of the basic laminar flow, whose nonlinear sta- 
bility we are examining, are given in I and, in a form expanded in E ,  in III(2.4)-(2.7). 
Thus 

(2.2) 
q x 9  9) = W P 1 +  Q 2 )  V ( x ,  $1, u&, 9) = Wl+ q2) V ( x ,  #), 
U(x ,  9) = 2(x2- 4) (x - i c )  sin 9 + O(e) ,  

p(x, $) = &(x) + sV,(x, $1 + E ~ [ V , ~ ( ~ )  + kT4V,l(x, 9) + k2c2V,,(x)] + W3), 

p - I  = a(x+&),  (2.3) 

014 = k ~ ( 2 ~ ) 4 ,  (2.4) 

where the functions V,, V,, KO, V,, and V,, are given by III(2.7). The parameter k is 
defined by 

while the factor T t  arises from R, = (aT /2c )*  with k held fixed as a, e-t  0 subject to 
(2.4). 

Perturbations from the above velocity field, together with the axial velocity com- 
ponent u5 and the kinematic pressure p' ,  are given by the following formulae, where 
aa6 is the axial co-ordinate, ~a2a2/v is the time and P(x ,$)  is proportional to the 
pressure field of the basic flow: 
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FIGURE 1. Geometry and co-ordinate systems. 

The above scalings are suggested by the work of Stuart (1958) and Davey (1962) on 
the concentric nonlinear problem. 

The governing nonlinear partial differential equations for u, v, w and p are given in 
III(2.13)-(2.18), while the required Jacobian J of the conformal transformation is 
defined in II(2.6).  In  I11 it  is suggested and confirmed that an expansion of the follow- 
ing form is appropriate for the steady solution, where €-+ 0 with k held fixed subject 

m 

T = PTn, R, = ke[T$+eT,/2Tt+O(~~)] .  (2.8) 
n=O 

We remind the reader that the term in p multiplied by €3 is the 'usual ' Taylor-vortex 
pressure field, while the term in p multiplied by e-2 is a 'lubrication' or Reynolds 
pressure field. As explained in I11 ( 5  3), the latter arises from conservation of mass 
flux or equivalently from the satisfaction of boundary conditions on the velocity. 
Other relevant work has been cited already in 5 1 .  

Substitution of (2.6)-(2.8) into the governing differential equations yields sets of 
equations at orders etn; these are given for n = 1, 2 and 3 in III(3.1'7)-(3.26). The first 
Reynolds pressure function (lo($) appears at  order E and drives a plane Poiseuille 
component of velocity at that order. However, ( lo(#)  is determined only when the 
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continuity equation at  order €2 (111, 3.15) is used to satisfy the velocity boundary 
condition at that order. 

In  the present paper, we take the Taylor number, velocity and ‘usual’ Taylor- 
vortex pressure expansions (2.6)-(2.8) to n = 4, but we need to consider the continuity 
condition for n = 5 in order to determine the Reynolds pressure function ql($). We 
shall not give all the equations in detail, but the general principles and the solutions 
are described in 0 3. 

3. Solutions and associated computations 
It can be seen from III(4.1) that the functions uo, vo, wo and p,, [the 0-functions of 

(2.6) and (2.7)] describing the Taylor vortex are periodic in f [  with wavenumber A, 
from III(4.2) that the 1-functions are the sum of parts independent off[ and periodic 
in f [  with wavenumber 2h, and from III(4.16) that the 2-functions are the sum of 
periodic parts with wavenumbers h and 3h. For the coefficients of these Fourier terms, 
which are functions of x and q5, the differential equations involve x derivatives only, 
with q5 as a parameter at  each stage. At lowest order the solution of a homogeneous 
eigenvalue problem is determined only up to a multiplioative function of 4, which is 
determined at  a higher order in the expansion by means of an integrability condition. 
The q5 dependence of the succeeding inhomogeneous equation is determined by the $ 
dependence of the forcing term, special attention being paid to the cases in which the 
linear operator repeats that of the original eigenvalue problem (parts of the solution 
which are periodic in f [  with wavenumber A ) ,  and to the mean flow equations, where 
account must be taken of the ‘lubrication’ pressure. 

The expansion procedure is explained in Q 4 of 111. The form of the expansion re- 
quired to go to higher order in € is as follows, where C,, = cos nhf and S,, = sin nAf[: 

uo = - B($)fo(z) q,, vo = B($) go(x) Cl,, wo = B(q5) h o w  S l h ,  Po = B(q5) ~oC1,; (3.1 1 
u1 = - B2($)f12(x) C2& 

vi  = B2(d)gio(z) +3&or3rh1T1(X2-!€) +B2(4)g12(X)C~~, 

2% = B2(q5) h12(4 S2A, 

111 = B2(q5) Z&r) + 6Qo r3 r~lT1lloo(x) + B2(q5) Z12(x) C2, + constant; 

( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  

(3.2d) 

u2 = - [Bl(q5)fo(x) + T1B(q5)f211(4 +B(q5) cos q5fZl2(4 + B3(d)fil3(x)I Cl, 

v2 = [Bl(q5) go(4 + TlB(q5) 9211(4 + B(q5) cos q5g212W 

U’Z = [Bl(q5) hob)  + TlB(q5) h211(4 +B(q5) cos q5h212(4 

- B3(4 ) f 2 3 ( x )  ‘%A, (3.3 

+ B3(9) g213(41 ClA + B3(q5) 923(x) C3A, (3.3b) 

+ B 3 ( q 5 )  h ~ ~ 3 ( X ) 1  81, + B 3 ( q 5 )  kdx) S3h3 (3.3c) 

B($) cos $212(2) + B3(9) &13(x)1 CIA + B3(q5)  z23(x) C3h; 

(3.3d) 
112 = IBi($) lo(x) + TiB(#) z 2 1 1 ( ~ )  

u3 = - [B4($)f30i(x) +B2(#)  $ f 3 0 2 ( ~ )  + TiB2($)f304(x)1 - [B4($)f321(x) 

+B2($)  cos $ f 3 2 2 ( x )  2Bi($) B ( d ) f i ~ ( ~ )  + T~B2($)f324(x)1 CZA -B4($)f~41(x) 

( 3 . 4 ~ )  
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03 = B4($) geol(x) + B2($) cos $g302(') + 2B1($) B($) gldx) 
+ TiB2($) g304(x) + i[Ci - 690 r3 rL1 Ti cos $1 (x2  - 4) 
+ lB4($) g 3 ~ 1 ( ~ )  +B2($)  cos $ g 3 2 2 ( x )  + 2B1($)  B($) g 1 2 ( x )  

+ TlB2($)  g324(x)1  c2A +B4($) g341(x)  c4A, 

%'3 = FB4(4) h321(x) +B2(#)  'OS $h322(x) + 2Bl($) B($) h12(x)  

T1B2($)h324(x)l 8 2 ,  + B4($)  h ~ l ( x )  5 4 ~ ,  

P3 = B4($)1aoi(x) + B2($)  cos $1302(x) + 2Bi($) B($) 

+ T , B ~ ( $ ) I , , , ( ~ ) +  i ~ ~ , ~ , r ~ r ~ ~ ~ ~ ~ o s ~  s" ( x 2 - 1 2  4 )  d x 
-t 

+ T?E306(x) + C l z l O O ( x )  + rB4($)  E321(x)  + B2($) $z322(x )  + 2Bl($) B($) I l 2 f x )  

+ T 1 B z ( $ ) 1 3 2 4 ( x ) l  1341(X)C4A* (3.4d) 

The sets of functions ( f o ,  go, h,, I,), ( f12,  g12, h12, I,,), . . . are calculated sequentially. 
For a given value of A ,  the parameter To of (2.8) is determined as the solution of a 
linear eigenvalue problem with associated eigenfunction ( f,, go, h,, I , )  as given in 
III(4.1). The parameters Qo, r3 and r4 are defined in 111, while g1 is determined by 
(3.16). The functions B($) and Bl($)  are given by the solution of first-order differential 
equations arising from integrability conditions, as mentioned earlier in this section. 
They will be discussed later, together with the choice of the constants Tl and T2. 

In  carrying out, the calculations, we found it convenient to follow the method of 
Eagles (1971) and rewrite the disturbance equations as a system of six first-order 
partial differential equations for u, v, w, p ,  av/ax and awlax. This makes the formal 
analytical calculations simpler, and is consistent with standard methods for solving 
the resulting ordinary differential equations. It is clear from (3.1)-(3.4) that the x- 
dependent functions appearing in the ordinary differential equations have the follow- 
ing associations, where suffixes have been omitted: f - 11, g - v, h - w and I - p ,  the 
additional variables being r - avlax and s N awlax. 

DU - A(n)U = W, 

The generic structure for each set of ordinary differential equations is 

(3.5) 

where D denotes dldx, UT = (1, r,  s, f , g ,  h) ,  r = Dg, s = Dh, WT = (L,  R, S ,  F, G ,  H )  
and A(n) is a matrix given by 

' 0 0 -nh n2h2 To&(x) 0 

0 0 0  1 n2h2 0 

-nh 0 0 0 0 n2A2 

0 0 0  0 0 nh 
0 1 0  0 0 0 

, O  0 1 0 0 0 

(3.4b) 

(3.4c) 

The column vector W represents the inhomogeneity arising from the nonlinear inter- 
action. The boundary conditions are 

(pl): (n rt; 0) f =  g = h = 0 at  x = +&, (3.7) 

I (Po) :  (n = 0) g = h = 0 at  x = +Q, 
f = l = O  at x = - g .  (3.8) 
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In  the generic problem (3.5) the functions U and W have an associated suffix of one, 
two or three digits depending on the order in the expansion in e,  the harmonic in 5 
and the power of the amplitude function B(4).  

In  addition, it is necessary to consider the adjoint problem for n = 1 ,  namely 

DU, + A(')TUa = 0, (3.9) 

subject to the boundary conditions 

(pa): 1, = ra = s, = 0 at x = -++. (3.10) 

In  a comparison with II(5.7)-(5.9), it should be noted that 1, = A2f,+, ra = go+ and 
S, = ADf:. 

Rather than give complete details, we treat two specimen problems 81  and 82.  

I (81): DUlo-A(0)U,, = W,, with (Po),  
L,, = - hfoho + kcTog%, 

n,, = - 6QO - 4(foro + 47oh,), 
X,, = Fl0 = G,, = H,, = 0, 

with a check constraint 

glo(x)dx = 0. s', 

(3.11) 

This is a re-formulation of III(4.6)-(4.15), with f o  and go defined by III(4.1) while 
k, = h-'Df0 and ro = Dg,. The normalizations imposed here on that eigenvalue 
problem and its adjoint II(5.7)-(5.9) are go = 1 at  x = 0 and ga = 1 at  x = - 4. Note 
the contrast with the normalizations of I1 (p. 407). The present nonlinear results, 
however, can be compared directly with I11(4.30), since the fundamental ( f , ,  go) 
normalizations are the same. 

(3.12) 

(8.2) : DU,,, - A(1W211 = W,,, with (P,), 
L,,, = &go + 3c&oTo r3 r - l ( X 2  - a) go + r3 r; rhl(&fo - cr,), 
R,,, = - 6Q0 r3 r i lxfo + r3 r; r;1&g0, 

x,~, = r3 r; r41 &ho, F,,, = r3 r; rilcgo, G,,, = H , , ~  = 0. 

In addition, Qo is defined by (3.11) and r3, r4 and I?; by III(4.23) and (4.27). 
There is a check constraint on each of g3,,(8), g3,,(8) and g304(x), namely that 

g,,,(x)dX = 0, i = 1,2,4. SI, (3.13) 

These constraints and the corresponding one in (3.11) for g,, ensure that mass flux is 
conserved and that the boundary conditions on the component of flow independent of 
5 are satisfied. 

The amplitude function B(4) is given by III(4.22)-(4.26), while Bl($) must satisfy 

kTt d[B,($ ) / a 4  )I /d4 + 2 r; B2(4 ) [B,(4 ) P ( 4  11 
= - r4,, cos 24  - r4110Tl cos 4- r4,,,T; + rsa, - ral15~4(4). (3.14) 
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Here u1 is chosen to ensure that the pressure-gradient function, namely 
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ql($) = I301B4($) +1302B2($) '20s $- 12&OB1($) B($) +1304T1B2($) 

- 12&, r3 l'ilTl cos $ + ul, (3.15) 

where the 130i, i = 1, 2,4, are certain integrals involving the U functions, satisfies 

(3.16) 

so that the pressure is single valued. The corresponding qo($) function is given by 
III(4.7) and (4.27). 

The coefficients arise as quotients of integrals when the 
integrability conditions for the appropriate differential systems are applied. They are 
of the form 

( ~ u ~ 4 1 i + ~ u ~ 4 1 i + s , S 4 1 i + f u ~ 4 1 i ) d ~ ,  i = 7,10, 11,15, (3.17) 

r4110, r4111 and 

s", !t 

r41i = - r ~ l  

ro = -s_! t[ l , (v , fo-c%) + ~ u v , ~ o + ~ , v , ~ o + f u ~ ~ o l ~ ~ ~  (3.18) 

in which the L, R, S and F functions depend on the functions in (3.1)-(3.4). The 
parameter r6 is given in III(4.23). The coefficient T2 in the expansion (2.8) has been 
chosen to be identical with that of linearized theory given in 11(5.41), after correction 
of IT(5.31) according to p. 110 of 111, so that eTl represents the elevation of the Taylor 
number above its critical value of T0+s2T2 to order €2 (11, 5.51). 

Detailed calculations of the differential systems involved for the case c = 2,  when 
the outer cylinder is at  rest, gave the following new results: 

r417 = - 11.858, r4110 = -0.0060673, r4111 = 3.270 x 10-6, r4115 = 151.06. (3.19) 

The critical Taylor number to order e2 is 

T, = 1694.97 +~2(1895.8 + 7877.1k2), (3.20) 

which is close to the value in II(6.10) after correction due to an error in I1 (see 111, 
p. 110, where 1904 was obtained for the coefficient of e2 by use of a slide rule, instead 
of 1895.8). It should also be noted that is mathematically equivalent to - r2 in 
II(5.44). The numerical discrepancy between the value in (3.19) and the value 
( - r2 = - 18.16) given in II(6.9) is due to a numerical error in 11. The result con- 
cerning the position of maximum vortex activity (11, 6.25) is replaced by 

0 = + ~(0.487 - 0.577k) + O(&E), 

but the qualitative conclusion following 11( 6.25) is not affected. In  contrast rale 
(see (3.17) with i = 8)) which is mathematically equivalent to  rl in II(6.8)) was chosen 
to be zero by appropriate choice of the eigenfunction U, added to U211, UZl2 and 

Several parameters that were recorded in III(4.30) have been recalculated and the 
u213. 

very slightly modified values are as follows: 

(3.21) 
h = 3.127, To = 1694.97, Qo = -0.13636, 

r = 23.088, r3 = 0.0073394, r4 = 38.154, 

r5 = -2.3713, r; = 40.094. 
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Owing to a change in the scale of the adjoint function from III(4.30)) Po is now 

r, = 0.22113. (3.22) 

The physical interpretation of these results is given in $0 4 and 5. 
We end this section with some remarks on the numerical calculations. Although 

they were simple enough in principle, the amount of detailed algebra and manipula- 
tion was so great that one of the main problems was to devise and carry out suitable 
checks on the accuracy. 

The method of calculation was a simple variant of the 'shooting' method for most 
of the functions, with a different procedure for the eigenfunction U, and for those 
functions, such.as UZl1, with the same operator as the eigenfunction operator. These 
methods have been described in Eagles (1971). Many of the same computer routines 
were employed. All integrations of the differential equations were done using the 
usual fourth-order Runge-Kutta method, while Simpson's rule was used for the quad- 
ratures. Twenty and forty steps were used at  various times for checking results. 

We list here a number of typical checks made on the results, though the list is not 
exhaustive. 

(i) The eigenfunction U, and t'he adjoint eigenfunction U, were checked against 
those calculated and quoted in I1 ( $  6 ) .  

(ii) In  calculating functions such as U211, we used a method (Eagles 1971) which 
would give the correct zeros in the boundary conditions only if the right-hand side 
had been correctly calculated. Thus the attainment of the correct zeros was a useful 
check. 

(iii) The parameter &, was checked against the result given in III(4.30). 
(iv) We changed the scaling of the eigenfunction U, arbitrarily and noted that the 

consequent changes in magnitude of later functions and constants were consistent. 
(v)  The functions UZli ( j  = 1,2,3) are arbitrary inasmuch as we may add to each 

an arbitrary multiple of the eigenfunction U,. The changes in subsequent functions 
and constants can be predicted theoretically. It was found that the theoretical 
changes in, for example, U301, U,,,, U304, U,,,, U,,,, U,,, and certain constants r4ij 
were consistent with those found by direct addition of the appropriate eigenfunction 
multiple in the program. In the final work, we chose to add appropriate multiples of 
the eigenfunctions to UZij ( j  = 1,2,3) so that r418 = r,,,, = r4114 = 0, where these 
parameters are given by (3.17) with i = 8, 13 and 14. 

(3.23) 12 (vi) The identity 
r4,7 - ra15 = 4r +- r5 

C 

and similar identities involving r4110, rrlll, r4113 and r4115 were also checked. 

checked by means of an independent theoretical and numerical calculation, which 
was done in association with the work of DiPrima & Eagles (1977). 

inferred from I1 and 111, and the present results agreed after allowing for changes in 
scaling in relevant cases and for the error in I?, ( =  - ra17) in 11. 

(ix) Also, it was checked that the physical quantities of interest, the torque and 
load, were independent of both the normalizations of the basic eigenfunction U, and 
the amount of the eigenfunction included in higher-order functions. 

(W The functions U,, Ulo, U12, u211, u2131 u23, u301, UM4, u306, u321 and u,,, were 

(viii) The values of ro, r, ri, r5, I',, r4, r41,, 1'415/1'419, r416/I'419 and T, can be 
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The h a 1  results for the constants Ti were calculated using 40 steps and are believed 
to be accurate to four significant figures. The following parameters, which will appear 
later and are functions of k and T,, are given in table 1 : F,, F,, e2, F,,, vl, Gc, G,, F,, 
F2, Fxl, Fx2, Fyl and Fy2. They were calculated using 160 steps in [0,2n] and are be- 
lieved to be accurate to the number of figures quoted. 

4. Condition for instability 

c = 2, namely 

is given by (3.20). Following the argument of I1 (p. 408)) we conclude that the con- 
ventional Taylor number 

which contains no factor E ,  has a critical value 

As mentioned in 0 3, the critical value of the Taylor number in the form of (2.1) for 

T = ( p , a / ~ ) ~ a ~ ,  (4.1) 

T, = ( ~ ~ a / v ) ~ S ~ ,  (4.2) 

T, = 1695.97 + 1969*38+ 4438.362 + O(Sz, Se2, E ~ ) ,  ( 4 . 3 ~ )  

or equivalently 

T, = 1694.97(1 -t-1.16188) (1 + 2 - 6 1 8 5 ~ ~ ) + 0 ( 8 ~ , & ~ , ~ ~ ) .  (4.3b) 

The latter form may be compared with II(6.14) as corrected in 111 (p. 110). Vohr 
(1967, 1968) uses a Taylor number T, = T,(1 + iS)-*, and the square root of its critical 
value is 

Ttc = 41.17(1+0-33096) (1 + 1 . 3 0 9 3 ~ ~ ) .  (4.4) 

We note that the term proportional to Sin ( 4 . 3 ~ )  b )  and (4.4) arises from k2e2 in (3.20) 
with use of (2.4). Cole (1967, 1969) has noted that, in his experiments, S (if less than 
about 0.5) had only a small effect on the ratio of the critical Taylor number to that for 
E = 0. A similar observation was made by Zarti, Jones & Mobbs (1977) with 6 < 0.43 
approximately and E < 0.4 approximately. Our formula (4.3b) is consistent with 
those observations. 

In view of the error in 11, figures 2, 3 and 4 in I1 are in error. Corrected versions 
are given in this paper as figures 2, 3 and 4. Moreover, reference should be made to 
figure 2 of Koschmieder (1976), where good agreement is shown for 6 < 0.4 between 
his experiments with S = 0.375 and this theory. 

Agreement with observation is rather better than appeared to be the case from 11. 
Moreover, Mr Frank Mobbs of the University of Leeds has advised us in conversation 
that, in figure 4, the data represented by circles, which dip below the value for e = 0, 
are almost certainly due to what he calls 'trapezoidal' vortices below critical, and 
are not a manifestation of true Taylor vortices. He has suggested, therefore, that the 
circled data might be disregarded in comparison with the present theory. We note, 
however, that similar experimental observations, with a dip below the critical value 
for e = 0, were reported by Versteegen & Jankowski (1969) and by F r h e  & Godet 
(1971). Furthermore, the relationship of this matter to end effects (Cole 1 9 7 4 ~ )  b, 
1976; Jackson & Mobbs 1975; Jackson, Robati & Mobbs 1977; Benjamin 1 9 7 8 ~ )  b;  
Stuart 1977; and earlier papers cited by Jackson et al.) is not at all clear. 
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3 0 ~  1 0.2 0.4 0.6 0.8 1 .o 
E 

FIGURE 2. Comparison of theory with experimental measurements by 
Vohr (1968) for S = 0.0104. -, theory; 0 ,  experiments. 

403 30 o 0.2 0.4 0.6 0.8 1.0 

E 

FIGURE 3. comparison of theory with experimental measurements. -, theory. Experiments : 
0 ,  Vohr (1968) for S = 0.099 using torque measurements; x , Kamal (19G6) for S = 0.0904 
using visual observation with aluminium powdor. 

Recent experimental and theoretical work on the Taylor-vortex and related prob- 
lems suggests that end effects may destroy the supercritical bifurcation from the two- 
dimensional basic flow to the three-dimensional Taylor-vortex flow at the critical 
Taylor number of linearized theory. Rather the end effects immediately introduce 
very weak Taylor vortices a t  speeds well below critical which are intensified in the 
neighbourhood of the critical Taylor number. Some of this work is summarized by 
Stuart (1977); see also Benjamin (1978a, b). 
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A 

X 
A 

0 0.2 0.4 0.6 0.8 1.0 
E 

FIGURE 4. Comparison of theory with experimental measurements by Castle t Mobbs (1968) 
for 6 = 0.112 (torque) and 8 = 0.0962 (dye or aluminium). -, theory. Experiment: 0, first 
instability (dye) ; A, second instability (aluminium) ; x , second instability (torque). 

One further point is that Koschmieder (1976, figure 3) noted a substantial drop in 
the wavelength in his eccentric-cylinder apparatus for E > 0.4, and attributed this to 
end effects, perhaps because of the relative shortness of his apparatus (at most 25 
Taylor vortices long). However, Castle & Mobbs (1968) noticed a substantial drop in 
wavelength for E > 0.4 even in an apparatus 100 vortices long. 

5. The flow and pressure fields 
The velocity field is obtained by the substitution of (3.1)-(3.4) in (2.6). As explained 

in 0 3, the functions f, g ,  h, . . . are given by the solution of inhomogeneous problems of 
the form typified by (3.11) and (3.12), although the basic eigenvalue problem for 
fo, go, h,, . . . is naturally a homogeneous problem. A complete record of the tables of 
the functions U can be obtained from the authors. 

The basic structure of the velocity field is clear: at  order €4 the flow has the same 
behaviour in x and as in the concentric case through U,(x) and cos A t ,  sin Ac, respec- 
tively, but the # variation is given by the multiplicative factor B(4). This function 
is given in III(4.22)-(4.27), in which the constant of integration is chosen to 
ensure that B(#) is 2n-periodic. An associated constant go, defined by III(4.27), is 
so chosen that 

(5.1) 

which ensures that the ‘lubrication’ pressure is 2n-periodic. Thus in (3.2b, d )  the 
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I 1 1 I I b 

4 
0 % n  n 3. 2 n  

FIGURE 5 .  The variation of B($)  and B,($) with $ for k = 0.31 and 
TI = 700. -, B ( $ ) ;  ---, Bl($). 

value go = 6Q0 F3Tl/r4 has been used in the terms independent of B2($). An example 
of B2($) is given in I11 (figure 2) and is repeated here in figure 5 as B($) .  

Just as in 11, on the linearized problem, an additional function Bl($), which multi- 
plies the eigenfunction, is introduced at order € 8 .  The differential equation governing 
Bl($) is given by (3.14)) where the r parameters are displayed in (3.19) and (3.21) 
and c1 is given by (3.15) and (3.16). The arbitrary constant of integration in (3.14) is 
determined by the need for Bl($) to be 2n-periodic. The numbers k and Tl must be 
chosen to reflect the particular conditions in the experiment, namely the ratio S*/s 
and the elevation ET, of the Taylor number above its critical value. 

Graphs of B($) and B,($) for Ic = 0-31 and TI = 700 are given in figure 5. The values 
of k and Tl have been chosen to relate to observations of Vohr (1968) with 6 = 0.099 
and 6 = 0.475 (111, p. 101). At a Taylor-number elevation sTl above critical of some 
30 yo when the outer cylinder was at rest, the maximum Taylor-vortex strength ob- 
served visually was at 50" downstream of maximum gap. Although S and E are rather 
large for the application of the present theory, it is of interest to make the appropriate 
calculations. 

As in I1 (p. 412) we choose to make a comparison with aw/ax at  the outer cylinder 
and, since the dominant term of the expression is strongest at  A( = &r, we restrict 
ourselves to that value. The expression for w is given by ( 2 . 6 ) )  (3.1)) (3.2c), ( 3 . 3 ~ )  
and ( 3 . 4 ~ )  with A t  = in, and its x derivative has the form 

aw(*, $ 9  n / w / a x  = e W $ )  so(&) +Wl($) so(:) + Tl B($) sz11(4) 

4- B($) Cos$sziz(~) +B3($)  [s213(8)-823($)1) +O(E'). (5.2) 
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We need the location $M of the maximum as $ varies. For small s we write 

P. M .  Eagles, J .  T. Xtuart and R. C .  DiPrima 

$M = $ 2 ~ 0  + E $ M ~ ,  

where $MO satisfies dB/d$ = 0 and 

(5.3) 

In addition, we need to bear in mind that $ is not the physical angle 0 measured on the 
outer cylinder; however, using the formulae of I1 (p. 411), we find that, to order E ,  

the angle 0, for maximum Taylor-vortex activity is given by 

OM = $ M O  + € . ( $ M i +  sin #MO). (5.5) 

$Mo = 0.821, $Mi = -0.676, (5.6) 

$M = 0.500, O M  = 0.848. (5.7) 

For the values of k and Tl quoted, we find numerically that 

from which, for E = 0,475, we obtain 

In  (5.3) the ratio of the second term to the first is rather large, being 0.39, but in (5.5) 
the corresponding ratio is 0.03. The upshot is that the angle OM is about 49") which is 
very close to Vohr's observation. In contrast, we note (111, pp. 101-102) that, when 

is ignored as in 111, we have $M = 47" and 0, = 67". [Note that the disparity 
between O = 76" in I11 (p. 101) and 0 = 67" arises from an c2 effect in use of the 
complete formula II(6.18) instead of (5 .5 ) . ]  Thus the effect of which is an order-s 
correction due to the flow, is essentially to cancel the difference between $M and OM. 

Bearing in mind that Dr Vohr has told us that his observation was 'certainly 
qualitative and subjective' and that 'reattachment, following separation, may have 
affected the observations' (111, pp. 101-102), we believe that the present theory has 
shown that i t  is capable of explaining the substantial shift of the maximum vortex 
strength downstream from the maximum gap. We note, however, that Koschmieder 
(1976), in an eccenhic-cylinder apparatus with 6 = 0.375 and for the two values 
= 0.278 and 0.556, reports being unable to see a location of maximum Taylor-vortex 

activity. Clearly more work is required on this type of comparison, and we understand 
from Mr Frank Mobbs that such work is in progress at  the University of Leeds. 

We turn now to the kinematic pressure field for the case when the outer cylinder is 
at rest (c = 2). From (2.1), (2.4), (2.5) and (2.7), we obtain 

P'(X, 4, E,  7) = (J?11/aa2) [P(., $1 +PR($)I+ (v2/a2a2) [ E f P o ( X ,  $ 9  5) + O(e)l, (5.8) 

where we have converted the 'lubrication' part of the perturbation pressure field, 
namely the part proportional to 

to have the Reynolds scaling of lubrication theory. The ratio of this part of (5.8) to 
the 'usual' Taylor-vortex pressure field p , , ( ~ ,  $,E) is still O(E-8). 

Vohr (1967) has made measurements of the pressure field on the outer cylinder for 
the cases S = 0.0104 with s = 0.2, 0.35, 0.51 and 0.68. Although his data are for a 
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FIGURE 6. The variation of pR(q5) with $ for B = 0.2, S = 0.0104 (k = 0.253). 

-, T, = l*OITa,; -, T, = 1*03T,,. 

much higher Taylor number than the present theory (or perhaps any perturbation 
theory) can hope to reach, it is nevertheless of some interest to evaluate the two 
parts of (5.9). Since our theory requires 8 to be small, we restrict ourselves to the 
case 8 = 0.2, which is the lowest value for which Vohr (1 967) quotes measurements. 
The corresponding value of k is 0.253. 

In figure 6 we show pR($) plotted against $ for Taylor-number elevations 1 % and 
3 yo above critical. In the former case, the ratio of the second to the first term in 
(5.9) is about g, while in the latter example the ratio is about S. Even for such low 
Taylor-number elevations, therefore, it is seen that the perturbation theory is at the 
limits of its applicability, at least as far as the pressure is concerned. Moreover, for 
an elevation 10% above critical, the ratio of the two terms in (5.9) is so high (#) as 
to render application of the theory pointless. 

It is known from I (equation 91) that P(x, $) is of order 1 when 6 = 0.2, so that our 
result for ~ ~ ( $ 1  is only 1-3 yo of the laminar pressure. In  view of the fact that Vohr's 
experiments were conducted at  a Taylor number of order ten times the critical value, 
we do not pursue this comparison further, except to note that, in contrast to figure 6, 
his measurements (Vohr 1967, figures 19, 20) suggest a pressure function p ,  anti- 
symmetric about 0 = $ = 7 ~ .  This may be a strongly nonlinear effect, which the present 
weakly nonlinear theory cannot treat. 
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6. The torque and load 
The basic formulae for the torque and load acting on the inner cylinder are given 

in I11 (p. 103). After a large amount of work, we find the following expressions for the 
torque Ti and the loads Fdy and Fy in the X and Y directions of figure 1 : 

} (6.1) 

} (6.2) 

} (6.3) 

= ( - 2npq1 (GB 4 GTF7), 

Gg = 1 + 2s2 + #8+ O(s4, Rk), GTV = (-e/2n) [Gl(Tl) +eG,(k, T,) + O(@)],  

FX = (-npq11/’2) ( F X B + F X T V ) )  

’XB = i R m e [ l  + 0(E2)1? FXTV = (e /n)  [ F X l ( k ,  TI) +eFX2(k, TI) f 0(s2)]9 

FIT = ( -  np!?12/s2) (FYB + FYTF7)) 

Fyg = 6e[l +is+ o(e3)J, FyTV = (~/n) [Fyl(k, q) +eJ’y2(k, TI) + O ( @ ) ] .  

In these formulae, the terms G,, FxB and Fyg  represent the contributions of the basic 
flow and the terms GTV, FxTV and FyTr the contributions due to the Taylor vortices. 
The notation is the same as in III(6.8)-(6.10) except that a factor 6 that appears in 
the scale factor for FIT in 111 has been placed in FITB and FITTr. The following relations 

Since B($) and B,($) follow from integration of III(4.22)-(4.27) and of (3.14)) with 
the numerical coefficients known from (3.19) and (3.21), formulae (6.1)-(6.14) give 
sufficient information for the calculation of the torque and load for any values of the 
parameters within the range of applicability of the theory. 
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T i  

41.64 
42.06 
42.45 
43.46 
44.44 
45.40 

41.71 
42,12 
42.53 
43.53 
44.51 
45.47 

41.97 
42.39 
42.80 
43.82 
44.81 
45.78 

43.74 
44.19 
44.65 
45.76 
46.84 
47-91 

47.80 
48.38 
4 8.94 
50.32 

TI GTV F X T V  

(a) E = 0.02, k = 2.549, T,, = 1717.22, Ti ,  = 41.44 

858.6 0.0152 - 0~0010 
2575.8 0.044 1 - 0.0019 
4293.0 0.0708 - 0'0015 
8586.1 0,1292 0.0012 
12 879 0.1754 0.0035 
17 172 0.2093 0.0050 

(b )  6 = 0.04, k = 1.274, Tae = 1722.53, Tte = 41.50 

430.6 0.0152 - 0.0019 
1291.9 0.0437 - 0.0035 
2153.2 0.0699 - 0.0028 
4306.3 0.1270 0.0025 
6459.5 0.1725 0.0070 
8612.6 0.2060 0*0100 

(c) E = 0.08, k = 0.636, T,, = 1743.76, T t c  = 41.76 

218.0 0.0152 - 0.0030 
653.9 0.0429 - 0.0055 

1089 9 0.0674 - 0'004 1 
2179.7 0.1196 0.0054 
3269.6 0.1617 0.0138 
4359.4 0.1932 0.0196 

(d )  E = 0.2, k = 0.253, T,, = 1892.63, TtC = 43.50 

94.63 0.0160 - 0.0041 
283.9 0.0424 - 0.0058 
473.2 0.0622 - 0.0007 
946.3 0.0938 0.0225 

14194 0.1111 0.04 17 
1892.7 0.1 199 0.0525 

(e) e = 0.35, k = 0.141, T,, = 2257.84, Tto = 47.52 

64.51 0.0184 - 0.0046 
193.5 0.0441 - 0'0024 
322.5 0.0579 0.0110 
645.1 0.0596 0.0605 

FYTV 

0.0005 
0.0019 
0.0029 
0.0024 

- 0.0007 
- 0.0045 

0~0010 
0.0035 
0.0054 
0.0044 

- 0.0016 
- 0.0093 

0.0016 
0.0057 
0.0087 
0.0062 

- 0.0054 
- 0.0203 

0.0028 
0.0088 
0.0118 

- 0'0015 
- 0.0357 
- 0.0773 

0.0045 
0.0124 
0.0138 

- 0.0210 

TABLE 2. Torque and loads for 6 = 0.0104 for various values of 6 and TI.  

For this paper, detailed calculations have been made of the torque and load for a 
set of values of e with 6 = 0.0104, as in Vohr's (1967, 1968) experiments, and for 
several values of the elevation of the Taylor number T, above critical up to about 20 yo. 
The values oft chosen initially were 0.20 and 0.35, the lowest values in the experiments; 
later, because of doubts over the validity of the series at  such relatively large values 
of e, we did calculations also for e = 0.02, 0.04 and 0.08. The results are given in 
tables 1 (a)-(e). At the head of each table we give the value of k defined by (2.4) and 
the critical Taylor number in the form T,, defined by ( 4 . 3 ~ ) .  

In tables 2 (a)-(e)  we give the functions G T V ,  FxTV and FlrTV defined in (6 .2 ) ,  (6 .3)  
and (6 .4 ) ,  so that direct comparison can be made with calculations recorded in I11 
(table 3 ) .  It should be noted that the relevant Taylor number for table 2 is T,. Thus 
the elevation of the Taylor number above critical is not tT, but eT,(1 -@)-a, where 
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E G T V ( % )  FxTv(%) FYTV 
0.02 20 3 ? 
0.04 20 3 ? 
0-08 20 3 ? 
0.20 10 1 ? 
0.35 6 1 ? 

TABLE 3. Suggested range of validity of Taylor-vortex torque and load calculations as a percent- 
age of the Taylor-number elevation above the critical value of TJs) for & = 0.0104 and a range 
of values of 8. 

the multiplicative factor arises in going from T to T,. A few word8 of caution are 
necessary about the range of validity of the perturbation scheme. We have taken as 
a rough criterion that results for the torque and load are acceptable if the second 
term in the perturbation is less than one-half of the first, a very optimistic view indeed. 
From this criterion we obtain the tentative ranges of validity shown in table 3 for 
the results on the torque and load given in table 2. The estimates in table 3 are ap- 
proximate and based on only the data at  the intervals in table 1.  Whereas the torque 
and similarly F,, at least for a small elevation above critical, are predicted reasonably 
well, there are grave doubts about Fy.  Some analytical reasoning will now be given 
by way of explanation of this difficulty with the present perturbation analysis. It is 
necessary to transform the solutions into series in powers of the Taylor-number ele- 
vation above critical. 

It is known (11, p. 413) that if k+co  (Tl fixed) we retrieve the solution for the 
linearized concentric case. [M'e know also from I11 (p. 100) that the nonlinear con- 
centric case can be retrieved from the limit T1+m ( k  fixed), but we do not pursue 
that possibility here.] In  the present work we extend to the nonlinear case the idea 
of k - t  co (Tl fixed) being an appropriate limit for the concentric problem. At  the same 
time, we shall produce an expansion in powers of Taylor-number elevation above 
the critical value. After much labour, we find forms for the functions GPpT', FxTv and 
FyTy of (6.1)-(6.3) as follows, where TI has been eliminated by use of Tl = s-l(T - T,): 

FxTV = (aIl)k-l+ a(3)k-3+. 1 ..) (T - T,) 
+ (a$1)k-1+a$3)k-3+ ...) (T-T,)2+O(T-TC)3, (6.14) 

(6.15) 

In  these formulae theg's, a's and b's are pure numbers. It is worth noting that in (6.13) 
letting k --f co with T - T,  fixed gives the same numerical values for the torque in the 
concentric case as were reported by DiPrima & Eagles (1977). 

In  (6.13) and (6.14) the terms proportional to T -  T, come from the corresponding 
terms O(c)  in (6.1) and (6.2), while the terms which are proportional to (T- T , ) 2  come 
from the terms O(s2)  in (6.1) and (6.2). In view of the fact that eTl is proportional to 
T -T,  this seems perfectly natural. Bearing this in mind, we turn to (6.15); here the 
term proportional to T - T, arises from the O(s2) term in (6.3), while the term (T - T,)2 
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arises from the O(e)  term in (6.3). Thus the ordering which is felt to be natural is re- 
versed! This arises as a consequence of the fact that  FIT2 in (6.9) is proportional to Tl 
as k+m, while Fyl in (6.8) is proportional to T2, as k+m. 

The upshot of these remarks is the observation that our expansion disorders the 
‘natural ’ form of expansion in powers of T - T, for the Taylor-vortex contribution to  
Fir. We believe that this is basically the reason why the O(e)  and O(e2) terms in the 
original expansion are of comparable magnitude; and for this reason we have ques- 
tioned in table 3 the validity of the results for FYTr given in table 2 .  These remarks 
should not be interpreted to mean that the results are incorrect, but rather that we 
cannot assert their validity on the basis of the usual rules of perturbation theory. 
This deficiency could perhaps be remedied by means of a direct expansion of the 
Taylor-vortex flow in powers of T - T,. 

As far as the torque is concerned, we have not compared our results with Vohr’s 
torque figures nor with the torque figures given by Castle & Mobbs (1 968) and Castle, 
Mobbs & Markho (1971) since the present work does not go to high-enough order to 
give the 6 and €2 corrections to the coefficients of T - T ,  in (6.13). This would be 
necessary to make thoroughly effective comparisons, but would require a calculation 
of the torque to order e3 in our expansions, whereas the present calculation goes to 
order e2. 

However, we note that Vohr (1967) has shown experimentally that, in a plot of 
dimensional torque against speed, the angle of bifurcation, between the torque curves 
for laminar and for Taylor-vortex flow, decreases as E increases. Cole (1967, 1969) 
observed a similar phenomenon in a series of experiments for different values of 6, 
and the papers of Castle & Mobbs (1968), Castle et aE. (1971) and Markho, Jones & 
Mobbs (1977) also give some support to Vohr’s observation. Our theory does not go 
to a high-enough order to show this explicitly since, as can be seen from (6.13), the 
coefficient of T - T, is independent of e to order e2. On the other hand, Vohr’s obser- 
vations seem also to be consistent with the idea that the additional torque due to 
Taylor vortices drops as e increases, with the percentage elevation of the Taylor 
number above critical held fixed. 

In  order to eliminate the effect of speed and to obtain results qualitatively com- 
parable with Vohr’s dimensional data in units of inch pounds, we have rewritten the 
Taylor-vortex part of (6.1) as 

(T , )~ .~ .  = - i p v ~ - t ~ j  A, (6.16) 

A = - eG,(T,) - c2tG2(JC, Tl) + (Tl/2%) GI(T1)l. (6.17) 

Figure 7 shows A plotted against TR for several values of e.  The dashed curve shows 
the torque a t  a T, value 5 yo above the e-dependent critical value, and indeed shows 
a fall in the torque, albeit slight. More extensive calculations would be needed to 
take this comparison further. 

Finally, accepting for the moment the results given in table 2 ,  we observe that the 
Taylor-vortex corrections to the basic load are smaller than those to the basic torque. 
For example, for 6 = 0.0104, e = 0.04 and Tk = 43.53, which is an elevation of T, 
above its critical value of loyo, we find from table 2 and (6.1)-(6.3) that 

This is consistent with the related experiments of Pr6ne & Godet (1974) on a loaded 
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::{ 1.2 

0.4 

0.2 

€=0.2 

I 1 -  - 
41 42 43 44 45 46 41 48 49 50 51 52 

To+ 

FIGURE 7 .  The dimensionless excess torquo A above the torque for circular Couetta flow as a 
function of 1 for e equal to 0, 0.04, 0.08, 0.2, 0.35. The dashed curve shows the torque at 5 %  
above the critical value of T ,  for the different values of E.  

journal bearing. They observed 'no significant differences between the load carrying 
capacity of bearings operating in the laminar or in the vortex flow regions. Beyond 
the transition point, friction torque is sizeably increased . . .'. 

7. Concluding remarks 
The work described in this paper has taken to higher order in s the nonlinear cal- 

culation described in 111. The results of this paper are as follows. 
(i) The calculated angle at  which the Taylor-vortex activity is predicted to be 

strongest is some 49" downstream of the maximum gap, in excellent agreement with 
Vohr's observations in spite of the experimental conditions being somewhat outside 
the range of validity of the theory. 

(ii) At a given percentage elevation of the Taylor number above critical, the 
additional torque due to Taylor vortices drops slightly as e increases, qualitatively in 
accordance with experiment. 

(iii) Formulae have been given for the torque and load on the inner cylinder. As 
far as the torque is concerned, the present theory is believed to be reasonably accurate 
for a range of eccentricities and Taylor numbers, but the accuracy is less acceptable 
for the component of the load in the X direction. Moreover, for the component of the 
load in the Y direction, the order-s and order-@ terms appear to be comparable in 
magnitude, a feature which we associate with a disordering of the terms in the ex- 
pansion for the Y component of the load, but not in the expansions for the X compo- 
nent and the torque. The only observations of the torque and load known to the authors 
were made at  too high a Taylor number (ten times the critical value) for the theory to 
have any accuracy. 

We conclude that further theoretical and experimental work is needed on the 
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problem, in order to bring results closer to a reasonable comparison. From a theoretical 
point of view, this might be achieved by an expansion in P - q. with 8 and 6 kept 
fixed, but then a formidable set of calculations would be required. 

Much of this work was done while J. T. Stuart was visiting Rensselaer Polytechnic 
Institute or R. C. DiPrima was a visitor at  Imperial College. It was supported in part 
by the Office of Naval Research, the Army Research Office, the Science Research 
Council of Great Britain, and by a NATO Research Grant for travel. The calculations 
were carried out at the City University of London, and thanks are extended to the staff 
of the Computing Centre. Also, we wish to thank Mr Frank Mobbs of the University of 
Leeds for helpful advice about the experiments of himself and his colleagues. 
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